标准号:BS EN ISO 19901-2-2005
中文标准名称:石油和天然气工业.海上建筑物的特殊要求.地震设计规程和标准
英文标准名称:Petroleum and natural gas industries - Specific requirements for offshore structures - Seismic design procedures and criteria
标准类型:E94
发布日期:2005/4/7 12:00:00
实施日期:2005/4/7 12:00:00
中国标准分类号:E94
国际标准分类号:75.180.20;91.120.25
适用范围:ISO 19901-2:2004 contains requirements for defining the seismic design procedures and criteria for offshore structures; guidance on the requirements is included. The requirements are applicable to fixed steel structures and fixed concrete structures. The effects of seismic events on floating structures and partially buoyant structures are also briefly discussed. The site-specific assessment of jack-ups in elevated condition is only covered in ISO 19901-2:2004 to the extent that the requirements are applicable. Only earthquake-induced ground motions are addressed in detail. Other geologically-induced hazards such as liquefaction, slope instability, faults, tsunamis, mud volcanoes and shock waves are mentioned and briefly discussed. The requirements are intended to reduce risks to persons, the environment, and assets to the lowest levels that are reasonably practicable. This intent is achieved by using seismic design procedures which are dependent on the platform's exposure level and the expected intensity of seismic events and a two-level seismic design check in which the structure is designed to the ultimate limit state (ULS) for strength and stiffness and then checked to abnormal environmental events or the accidental limit state (ALS) to ensure that it meets reserve strength and energy dissipation requirements.For high seismic areas and/or high exposure level fixed structures, a site-specific seismic hazard assessment is required; for such cases, the procedures and requirements for a site-specific probabilistic seismic hazard analysis (PSHA) are addressed. However, a thorough explanation of PSHA procedures is not included.Where a simplified design approach is allowed, worldwide offshore maps are included that show the intensity of ground shaking corresponding to a return period of 1 000 years. In such cases, these maps may be used with corresponding scale factors to determine appropriate seismic actions for the design of a structure.