近几年来,从工业4.0的热潮开始,智能制造、CPS、工业互联网(平台)、企业上云、工业APP、人工智能、工业大数据、数字工厂、数字经济、数字化转型、C2B(C2M)等概念接踵而至,对于大多数制造企业而言,可以说是眼花缭乱、无所适从。
智能制造涉及的技术非常多,例如云计算、边缘计算、RFID、工业机器人、机器视觉、立体仓库、AGV、虚拟现实/增强现实、三维打印/增材制造、工业安全、TSN(时间敏感网络)、深度学习、Digital twin、MBD、预测性维护......,让企业目不暇接。这些技术看起来都很美,但如何应用,如何取得实效?很多企业还不得而知。
企业推进智能制造领域的相关技术十分缺乏经验,欠缺可以借鉴的成功案例。目前,制造企业已经存在三种类型的孤岛:信息孤岛、自动化孤岛,以及信息系统与自动化系统之间的孤岛。企业目前也缺乏统一的部门来系统规划和推进智能制造。在实际推进智能制造的过程中,企业也仍然是头痛医头,缺乏章法。
推进智能制造,前景很美好。但是绝大多数制造企业利润率很低,缺乏自主资金投入。在“专项”、“示范”以及“机器换人”等政策刺激下,一些国有企业和大型民营企业争取到各级政府给予的资金扶持,而中小企业只能“隔岸观火”,自力更生。然而,为了争取政府项目,方案必须做得漂亮,档次必须高大上,投入必须上亿。
大屏幕指挥中心是必须有的,大量采用机器人的自动化生产线是必须建的,立体仓库、AGV也是可以有的,MES更是必不可少的,国产系统是必须用的。至于究竟能否取得实效,就只有企业“冷暖自知”了。
在推进智能制造过程中,不少企业对于建立无人工厂、黑灯工厂跃跃欲试,认为这就是智能工厂。而实际上,高度自动化是工业3.0的理念。
对于大批量生产的产品,国外的优秀企业早就实现了无人工厂,例如日本FANUC全自动装配伺服电机,40秒一个,但其前提是产品的标准化、系列化,以及面向自动化装配的设计,例如将需要用线缆进行插装的结构改为插座式的结构。
e-works两次组团参观三菱电机的名古屋制作所可儿工厂,他们非常明确,对于大批量生产的产品,大量应用机械手,实现高度自动化;对于中小批量的产品,推进低成本自动化,即部分工位的自动化;而对于单件定制的产品,采取手工装配。
去年,e-works考察团参观施耐德电气的法国诺曼底工厂,他们非常客观地介绍,该工厂是生产继电器的自动化工厂,但还不是智能工厂,邀请我们来年再去,实际上该工厂实现了从绕线、装配、包装等全流程的自动化,而且可以在一条产线生产多种变型产品。
西门子一直将被广泛誉为工业4.0典范的安贝格电子工厂称为数字化工厂,其特点是人机协作的柔性自动化生产、智能物流、工业软件广泛应用、海量的数据采集以及大数据分析。
一个真正的智能工厂,应该是精益、柔性、绿色、节能和数据驱动,能够适应多品种小批量生产模式的工厂。智能工厂不是无人工厂,却是少人化和人机协作的工厂,推进智能工厂绝不是简单地实现机器换人。南京的爱立信工厂有一条装配线,一开始设置的自动化率是90%,后来发现调整为70%,增加若干人工工位,整体质量和效率反而是*优的。此外,对于装备制造行业,机加工等工序并不适合建立自动化生产线,而建立FMS(柔性制造系统),则是更现实的选择。MAZAK、FANUC的机加工车间应用FMS已达到720小时无人值守,自动生产不同的机械零件。
制造企业的企业家,尤其是中小型民营企业的老板,非常关心投资回报。我多次听到一些企业家提出,必须能够在三到四年能够收回投资的信息化、自动化系统才投入,甚至有期望值更高的,希望能够找到“下金蛋的鸡”。然而,有些账容易算,比如某条产线减少了多少工人。有些账却不那么容易算,例如工业软件的应用涉及到如何满足企业不断变化的个性化需求。
作为一个使能要素,企业离不开工业软件,却难以计算出它究竟为企业直接或间接节省了多少成本,赚了多少钱。如果选型、实施和应用不到位,更是常常用不起来,业务部门牢骚满腹。长此以往,制造企业更加重硬轻软,*后停留在小打小闹地做一点局部的自动化改善。
企业要真正实现智能制造,必须进行生产、质量、设备状态和能耗等数据的自动采集,实现生产设备(机床、机器人)、检测设备、物流设备(AGV、立库、叉车等),以及移动终端的联网,没有这个基础,智能制造就是无源之水。
但是,我常常看到很多制造企业还停留在单机自动化阶段,甚至一些知名企业的生产线也未联网。没有基础的设备联网,何谈工业互联网?!
无论是推进企业信息化、两化融合,还是进一步实现数字化转型,推进智能制造,基础数据的规范性和准确性都是必要条件。很多企业在实施ERP,或者ERP升级换型的过程中,花费时间*多的就是基础数据的整理。企业管理的规范性、业务流程的清晰,也是企业推进智能制造的“敲门砖”。但现实的情况是,一些企业的基础数据还没有理顺,却在大谈“工业大数据”。这种舍本逐末的做法,注定是难以取得实效的。
(中国纺织网)