金属零部件在交变载荷作用下,其中微小的裂纹容易延伸扩展,造成零部件的断裂失效,严重危害相关人员的生命和财产安全。因此重要的零部件需要在出厂前或服役中进行检测。
漏磁检测是一种广泛应用于钢管、钻杆、储油罐、汽车零部件等铁磁性材料的无损检测方法。相较于其他方法,其具有灵敏度高、无需耦合剂、操作方便、检测成本低以及易于自动化等优势,对铁磁性工件表面和内部的裂纹、孔洞等缺陷的检测效果显著。
在漏磁检测中,探头与待检测工件表面之间的距离称为提离值,是漏磁检测中*重要的工艺参数之一。通常为了保护传感器或提高检测稳定性,检测时始终会保持一定的提离值,但缺陷的漏磁场会随提离值的增大而迅速衰减,无法有效地检测微小裂纹或在处于复杂电磁环境下的裂纹。
1漏磁检测中的提离值
提离值定义
“提离值”源自涡流检测、漏磁检测等电磁无损检测方法中的提离效应,即缺陷产生的扰动磁场在空气中传递迅速衰减,同时导致传感器在不同高度检测到的信号差异较大。
提离值的影响
漏磁场水平分量与提离值的函数关系如图2所示,可见漏磁场随提离值的增大呈负指数级衰减。因此当提离值较大时,漏磁场信号会大幅衰减,降低信噪比。另一方面,提离值也会影响漏磁信号的稳定性。由图2可以看出,当提离值较小时,提离值变动Δl导致漏磁场变动ΔB1,而当提离值较大时,漏磁场变动为ΔB2,可以明显看出,ΔB1>ΔB2。也就是说当低提离时,探头对提离值的变化更加敏感,更加不稳定;而高提离时,探头对提离值的变动更不敏感,信号更加稳定。
大提离检测的要素
将无损检测的传感过程简化为如图3所示的系统模型。**待检测工件产生信源(如光、超声波、磁场、电场、热场等),信源经过传输介质的传导,扩散至传感器所在的区域,传感器将特定的物理信号转化为方便传输、识别、存储的电信号,从而完成信号的拾取和转换。
提离值主要在电磁无损检测领域中使用,通常都在毫米和亚毫米尺度。而光学检测和热成像检测却可以实现分米级甚至米级的远距离检测,主要原因是光学检测通过打光使被检测特征产生足够强和对比度足够高的可见光反射;热成像检测是通过加热使检测对象的热场分布不均且对外产生红外辐射,无论是可见光还是红外辐射都是一种电磁波,电磁波在空气中传播能量集中,衰减很小,通过足够高分辨率的相机或红外相机就可以捕捉到图像特征。
总之,实现远距离无损检测,**需要信源的强度和信噪比足够高,这是整个检测过程的基础;其次需要传输介质协助信源的传递,避免信源在介质中衰减;*后需要高灵敏度的传感器对信号进行拾取和转换。
2大提离漏磁检测方法
调整信源
信源是检测的基础,对于漏磁检测来说,大提离检测要求信源的强度和信噪比足够高。通常来说,缺陷的漏磁场随磁化场强度的增大而增大,*后趋于饱和,因此常规的漏磁检测要求在饱和磁化或近饱和磁化状态下进行。
除了饱和磁化之外,SUN等研究发现,漏磁场不仅和磁化场、缺陷尺寸有关,还和缺陷附近的背景磁场有关,背景磁场会抑制漏磁场的传播范围和强度,导致大磁化反而不一定得到大的漏磁场。这就是所谓的磁压缩效应,基于此,孙燕华等提出了一种基于磁真空泄漏原理的漏磁无损检测新方法,该方法使用磁屏蔽罩大幅降低背景磁场,促使工件中的磁场向上方的传感器泄漏,扩大了漏磁场的扩散范围,显著提高了磁敏元件在大提离值下的检测灵敏度。
SUN的另一个研究提出了基于磁场扰动的大提离检测方法。常规的漏磁检测中只有一个缺陷漏磁场R1,漏磁场的扩散半径仅为r1。在磁场扰动方法中,在传感器上方增加一个附加磁源R2,磁源R2的磁场影响范围为r2,磁源R2会与磁源R1相互作用,在r1和r2的范围内磁场产生相互扰动。这样通过两个磁源的相互扰动作用,就可以在磁源R2附近检测到缺陷信号。显然这样布置的传感器可以有很大的提离值,从而实现了基于磁场扰动的大提离检测。
改变传递介质
漏磁场被传感器拾取需要经过提离空间的传递,而在常规的漏磁检测中漏磁场通过空气传播到传感器时已经经过了大幅度衰减。因此如何改变传递介质避免漏磁场在空气中的衰减一直是大提离漏磁检测的重点研究内容,许多学者都在这个领域提出了大提离的检测方法。
WU等在研究井口钻杆漏磁检测中提出了使用聚磁铁芯的方法实现大提离检测。聚磁铁芯大提离检测原理,因为空气的相对磁导率接近于1,磁阻很大,漏磁场在空气中传播时衰减迅速,故使用传统的感应线圈进行信号拾取,灵敏度较差,而铁磁性材料的相对磁导率通常是空气的成百上千倍,因此对空气中的漏磁通就有聚集的作用。